Департамент образования администрации города Южно-Сахалинска Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 32 г. Южно-Сахалинска

Приложение № 1 к содержательному разделу ООП СОО МАОУ СОШ № 32 г. Южно-Сахалинска

Утверждено приказом директора школы от 20.09.2019 № 463

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика» (базовый уровень)

среднее общее образование

10-11 классы

Составитель: Хохрина Ольга Викторовна, учитель физики высшей категории

Южно-Сахалинск 2019 г.

Планируемые результаты освоения предмета «Физика»

Личностные результаты:

- сформировать познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убеждённость в закономерной связи и познаваемости явлений природы, объективности научного знания, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- развитость теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формировать доказательства этих гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностного ориентированного подхода;
- приобретение ценностных отношений друг к другу, к учителю, авторам открытий и изобретений, к результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умением предвидеть результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами; овладение УУД на примерах выдвижения гипотез для объяснения известных фактов и экспериментальной проверки этих гипотез, разработки теоретических моделей процессов или явлений;
- сформированность умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нём ответы на вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитость монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- овладение коммуникативными умениями докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации;
- освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- сформированность умений работать в группе с выполнением различных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты:

• знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;

- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы;
- понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
- умение измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоёмкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние и оптическую силу линзы;
- владение экспериментальными методами исследования в процессе самостоятельного излучения зависимости пройденного пути и времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объёма вытесненной воды, периода колебаний маятника от его длины, объёма газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;
- понимание смысла основных физических законов: законов динамики Ньютона, закона всемирного тяготения, законов Паскаля и Архимеда, закона сохранения импульса, закона сохранения энергии, закона сохранения электрического заряда, закона Ома для участка цепи, закон Джоуля-Ленца и умение применять их на практике;
- умения применять теоретические знания по физике на практике, решать физические задачи с использованием полученных знаний;
- владение разнообразными способами выполнения расчётов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- Понимание принципа действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, а также способов обеспечения безопасности при их использовании;
- Умение применять полученные знания для объяснения принципа действия важнейших технических устройств;
- Умение использовать полученные знания, умения и навыки для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Выпускник научится:

• соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;

- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

<u>Примечание</u>. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

- понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.

Выпускник получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
 - создавать собственные письменные и устные сообщения о физических явлениях

на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Элементы астрономии

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
 - различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета

10 класс

Физика как наука и основа естествознания. Экспериментальный характер физики. Физические величины и их измерение. Связи между физическими величинами. Научные методы познания окружающего мира и их отличие от других методов познания. Роль эксперимента и теории в процессе познания природы. Научные гипотезы. Физические законы. Физические теории. Границы применимости физических законов и теорий. Принцип соответствия. Основные элементы физической картины мира.

1. Механика

Кинематика. Механическое движение и его виды. Материальная точка. Относительность механического движения. Система отсчета. Координаты. Радиус-вектор. Вектор перемещения. Скорость. Ускорение. Прямолинейное движение с постоянным ускорением. Свободное падение тел. Движение тела по окружности. Центростремительное ускорение.

Кинематика твёрдого тела. Поступательное движение. Вращательное движение твердого тела. Угловая и линейная скорости вращения.

Динамика. Основное утверждение механики. Инерциальные системы отсчета. Принцип относительности Галилея. Законы динамики.

Силы в природе. Сила тяготения. Закон Всемирного тяготения. Первая космическая скорость. Сила тяжести и вес. Сила упругости. Закон Гука. Силы трения

Законы сохранения в механике. Импульс. Закон сохранения импульса. Реактивное движение. Кинетическая энергия. Потенциальная энергия. Закон сохранения энергии. Использование законов механики для объяснения движения небесных тел для развития космических исследований. Границы применимости классической механики.

Демонстрации.

Зависимость траектории от выбора системы отсчета. Падение тел в вакууме и в воздухе. Явление инерции. Сравнение масс взаимодействующих тел. Измерение сил. Сложение сил. Зависимость силы упругости от деформации. Сила трения. Условия равновесия тел. Переход кинетической энергии в потенциальную.

2. Молекулярная физика. Термодинамика

Основы молекулярной физики. Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Размеры и масса молекул. Количество вещества. Моль. Постоянная Авогадро. Броуновское движение. Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел. Тепловое движение молекул. Модель идеального газа. Основное уравнение мкт газа.

Температура. Энергия теплового движения молекул. Тепловое равновесие. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Измерение скоростей движения молекул газа. Давление газа.

Уравнение состояния идеального газа. Уравнение Менделеева – Клапейрона. Газовые законы.

Термодинамика. Внутренняя энергия. Работа в термодинамике. Количество теплоты. Первый закон термодинамики. Изопроцессы. Второй закон термодинамики. Необратимость тепловых процессов. Порядок и хаос. Тепловые двигатели и охрана окружающей среды. КПД двигателей.

Взаимное превращение жидкостей и газов. Твёрдые тела. Испарение и кипение. Насыщенный пар. Влажность воздуха. Капиллярные явления. Кристаллические и аморфные тела.

Демонстрации.

Механическая модель броуновского движения. Изменение давления газа с изменением температуры при постоянном объеме. Изменение объема газа с изменением температуры при постоянном давлении. Изменение объема газа с изменением давления при постоянной температуре. Кипение воды при пониженном давлении. Устройство психрометра и гигрометра. Явление поверхностного натяжения жидкости. Кристаллические и аморфные тела. Модели тепловых двигателей.

3. Электродинамика

Электростатика. Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Проводники в электростатическом поле. Диэлектрики в электрическом поле. Поляризация диэлектриков. Потенциальность электростатического поля. Потенциал и разность потенциалов. Электроемкость. Конденсаторы. Энергия электрического поля конденсатора.

Постоянный электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление. Электрические цепи. Последовательное и параллельное соединения проводников. Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.

Электрический ток в различных средах. Электрический ток в металлах. Полупроводники. Собственная и примесная проводимости полупроводников, p-n-переход. Полупроводниковый диод. Транзисторы. Электрический ток в жидкостях. Электрический ток в вакууме. Электрический ток в газах. Плазма.

Демонстрации.

Электрометр. Проводники и диэлектрики в электрическом поле. Зависимость емкости конденсатора от расстояния между пластинами, площади перекрываемых пластин, рода диэлектрика. Энергия заряженного конденсатора. Электроизмерительные приборы. Магнитное взаимодействие токов. Магнитные свойства вещества. Правило Ленца.

11 класс

1. Электродинамика

Магнитное поле. Взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Магнитные свойства вещества.

Электромагнитная индукция. Открытие электромагнитной индукции. Правило Ленца. Электроизмерительные приборы. Магнитный поток. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитное поле.

2. Колебания и волны (21 ч)

Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания. Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Емкость и индуктивность в цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи.

Производство, передача и потребление электрической энергии. Генерирование электрической энергии. Трансформатор. Передача электрической энергии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн.

Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

3. Оптика

Световые лучи. Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы. Получение изображения с помощью линзы. Светоэлектромагнитные волны. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

4. Квантовая физика

Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.

Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода Бора. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра. Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада. Протон-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц.

5. Строение и эволюция Вселенной

Строение Солнечной системы. Система Земля — Луна. Солнце — ближайшая к нам звезда. Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца, звёзд и галактик. Применимость законов физики для объяснения природы космических объектов.

Тематическое планирование

No	Наименование разделов	Количество часов
10 класс		
1.	Введение	1
2.	Кинематика	9
3.	Динамика и силы в природе	8
4.	Законы сохранения в механике	7
5.	Молекулярная физика. Термодинамика	20
6.	Электродинамика	24
	Bcero	68

No॒	Наименование разделов	Количество часов
11 класс		
1.	Электродинамика	9
2.	Колебания и волны	21
3.	Оптика	16
4.	Квантовая физика	19
5.	Строения и эволюция Вселенной	3
	Всего	68